MP2I - 2025/2026 Informatique - TP n°13 - Listes doublement chafnées 1

TP n°13 - Listes doublement chainées

Une liste doublement chainée est une structure chainée dans laquelle chaque maillon contient un lien vers le maillon
suivant et un lien vers le maillon précédent. L'avantage est de pouvoir supprimer un maillon quelconque en temps
constant, contrairement a la structure chainée simple.

Attention : on ne confondra pas la liste (la structure abstraite de données) et les listes doublement chainées. Dans la
suite on écrira liste pour la structure abstraite et liste pour la structure doublement chainée.

1 Premiére version

Pour imiter ce qu'on a fait avec le chainage simple, on peut utiliser la structure suivante :

premier | dernier
o o

y ‘ ‘ "
}<Jafe] lolz]6] [els]d] [el4a[X
t t t

Figure 1 - Liste doublement chainée (1, 2, 3, 4), premiére version.

On représente cette structure avec les définitions suivantes en C.

struct MaillonDouble { struct LDC1 {
int valeur; maillondoublex premier;
struct MaillonDoublex prec; maillondoublex dernier;
struct MaillonDoublex suiv; };

}

typedef struct LDC1 ldcl;
typedef struct MaillonDouble maillondouble;

Si u est de type ldclx, alors on utilise les conventions suivantes :

m]la liste est vide si et seulement si u->premier == NULL et u->dernier == NULL;
m i la liste n’est pas vide, alors u->premier->prec == NULL, u->dernier->suiv == NULL, et ce sont les deux seuls
pointeurs nuls présents dans la structure chainée.

On donne les fonctions permettant de créer un nouveau maillon (avec une valeur donnée et des pointeurs nuls des deux
cotés) et une nouvelle liste (vide) :

maillondoublex nouveau_maillon(int x){ ldcl* new_ldcl(){
maillondouble* n = malloc(sizeof(maillondouble)); ldcl *d = malloc(sizeof(ldcl));
n->valeur = x; d->premier = NULL;
n->suiv = NULL; d->dernier = NULL;
n->prec = NULL; return d;
return n; }
}

m Q1. Ecrire une fonction void retire_maillon(ldclx d, maillondoublex n) qui supprime un maillon d’une liste.
Cette fonction prend un pointeur vers le maillon et un pointeur vers la liste en arguments, et elle gére a
la fois la suppression du maillon et la libération de la mémoire correspondante.

m Q2. Ecrire une fonction void insere_avant(ldcl* d, maillondoublex n, int x) qui insére un maillon (avec la va-
leur fournie) juste avant le maillon passé en argument.

m Q3. Ecrire la fonction symétrique void insere_apres(ldclx d, maillondoublex n, int x).
m Q4. Ces fonctions sont-elles suffisantes pour écrire par exemple une fonction

ldclx init_tableau(intx tab, int long) (initialise une liste doublement chainée avec les valeurs dun
tableau)? Si non, pourquoi?

2 Version avec sentinelle

On pourrait écrire les fonctions manquantes pour la structure précédente, mais les fonctions d’ajout et de retrait ont
pas mal de cas particuliers a considérer (liste vide, de 1 ou de 2 éléments). On peut s’éviter tous les cas particuliers en
changeant légérement la structure.

On ne change rien au type maillondouble, mais on convient de rajouter un maillon « fictif », appelé sentinelle, a 'extré-

mité de la liste. La valeur présente dans le champ valeur de ce maillon ne sera pas significative (représenté par?), et
la liste aura la structure suivante :

MP2I - 2025/2026 Informatique - TP n°13 - Listes doublement chafnées 2

! } v ' '

lol1o] [elslo] [el2]0] [efsf[6] [o]a]o]

t t t t t

Figure 2 - Liste doublement chainée (1, 2, 3, 4), version avec sentinelle.

On change donc de type pour représenter nos listes doublements chainées :

struct LDC {
maillondoublex sentinel; //Pointeur vers la sentinelle

}

typedef struct LDC ldc;

= Q5.
= Q6.

= Q7.
= Q8.
= Q9.

Ecrire la fonction ldc* nouvelle_ldc() qui crée une nouvelle liste doublement chainée. Cette liste sera vide,
ce qui signifie qu’elle ne contiendra que le maillon sentinelle, correctement initialisé.

Ré-écrire les fonctions retire_maillon, insere_avant et insere_apres pour la nouvelle structure. La fonction
retire_maillon pourra supposer sans le vérifier que le maillon passé en argument n’est pas le maillon senti-
nelle (et aucune de ces fonctions n’aura besoin de prendre la liste elle-méme en argument).

Ecrire une fonction void detruit_ldc(ldcx d) qui libere la totalité de la mémoire utilisée par une liste dou-
blement chainée.

Ecrire une fonction ldcx init_tableau(intx t, int long) qui convertit un tableau en liste doublement chai-
née.

Ecrire les primitives de la structure de données liste (cf cours) avec la structure doublement chainée.

3 Nombres chanceux

Les nombres chanceux sont définis par le processus suivant :

= Q10.

= Q11.

on part de la liste des entiers impairs (jusqu'a une certaine borne n); 'entier 1 est chanceux;
on considére I'entier qui suit 1 dans la liste (c’est 3);

on élimine un nombre sur 3 de la liste, en commencant au début; 'entier 3 est chanceux;

on considere ’entier qui suit 3 dans la liste (c’est 7);

on élimine un nombre sur 7 de la liste, en commencgant au début; 'entier 7 est chanceux ...

m @ 5 7 9 11 13 15 17 19 21 23 25 27 29 31
> lsur3
E E @ 9 13 15 19 21 25 27 31
> 1sur?7
m E @ 13 15 21 25 27 31
> lsur9
m E E @ 15 21 25 31
> 1sur 13
1 E E @ 21 25 31

Figure 3 - Génération des nombres chanceux.

Combien vaut la somme des nombres chanceux inférieurs ou égaux a 105? Utiliser une liste doublement
chainée pour répondre a la question.

Remarque : Ce n’est pas la méthode la plus simple ou la plus efficace, il s’agit d'une application de ce qu’on
a fait au-dessus.

(Bonus) Une liste doublement chainée permet de réaliser facilement la structure abstraite de deque (double
ended queue, ou file bilatere).
Il s’agit d’'une structure séquentielle (impérative) a laquelle on peut ajouter des éléments, a droite et & gauche;
on peut également retirer I'élément le plus a droite et 'élément le plus a gauche
Ecrire les quatre fonctions suivantes qui effectuent I'ajout et le retrait d’un élément sur un coté de la structure
(le coté est écrit dans le nom des fonctions). Pour retire_gauche et retire_droite, on vérifiera la licéité de
lappel a 'aide d’'un assert.

void ajoute_gauche(ldc =d, int x);

void ajoute_droite(ldc =d, int x);

int retire_gauche(ldc xd);

int retire_droite(ldc xd);

D’apres un TP de JB. Bianquis

	Première version
	Version avec sentinelle
	Nombres chanceux

