
MP2I - 2025/2026 Informatique – TP n°13 – Listes doublement chaînées 1/2

TP n°13 – Listes doublement chaînées
Une liste doublement chaînée est une structure chaînée dans laquelle chaque maillon contient un lien vers le maillon
suivant et un lien vers le maillon précédent. L’avantage est de pouvoir supprimer un maillon quelconque en temps
constant, contrairement à la structure chaînée simple.
Attention : on ne confondra pas la liste (la structure abstraite de données) et les listes doublement chainées. Dans la
suite on écrira liste pour la structure abstraite et liste pour la structure doublement chainée.

1 Première version
Pour imiter ce qu’on a fait avec le chainage simple, on peut utiliser la structure suivante :

1 2 3 4

premier dernier

Figure 1 - Liste doublement chaînée (1, 2, 3, 4), première version.
On représente cette structure avec les définitions suivantes en C.

struct MaillonDouble {
int valeur;
struct MaillonDouble* prec;
struct MaillonDouble* suiv;

};

typedef struct MaillonDouble maillondouble;

struct LDC1 {
maillondouble* premier;
maillondouble* dernier;

};

typedef struct LDC1 ldc1;

Si u est de type ldc1*, alors on utilise les conventions suivantes :

■ la liste est vide si et seulement si u->premier == NULL et u->dernier == NULL ;
■ si la liste n’est pas vide, alors u->premier->prec == NULL, u->dernier->suiv == NULL, et ce sont les deux seuls

pointeurs nuls présents dans la structure chaînée.

On donne les fonctions permettant de créer un nouveau maillon (avec une valeur donnée et des pointeurs nuls des deux
côtés) et une nouvelle liste (vide) :

maillondouble* nouveau_maillon(int x){
maillondouble* n = malloc(sizeof(maillondouble));
n->valeur = x;
n->suiv = NULL;
n->prec = NULL;
return n;

}

ldc1* new_ldc1(){
ldc1 *d = malloc(sizeof(ldc1));
d->premier = NULL;
d->dernier = NULL;
return d;

}

■ Q1. Écrire une fonction void retire_maillon(ldc1* d, maillondouble* n) qui supprime un maillon d’une liste.
Cette fonction prend un pointeur vers le maillon et un pointeur vers la liste en arguments, et elle gère à
la fois la suppression du maillon et la libération de la mémoire correspondante.

■ Q2. Écrire une fonction void insere_avant(ldc1* d, maillondouble* n, int x) qui insère un maillon (avec la va-
leur fournie) juste avant le maillon passé en argument.

■ Q3. Écrire la fonction symétrique void insere_apres(ldc1* d, maillondouble* n, int x).
■ Q4. Ces fonctions sont-elles suffisantes pour écrire par exemple une fonction

ldc1* init_tableau(int* tab, int long) (initialise une liste doublement chainée avec les valeurs d’un
tableau) ? Si non, pourquoi ?

2 Version avec sentinelle
On pourrait écrire les fonctions manquantes pour la structure précédente, mais les fonctions d’ajout et de retrait ont
pas mal de cas particuliers à considérer (liste vide, de 1 ou de 2 éléments). On peut s’éviter tous les cas particuliers en
changeant légèrement la structure.
On ne change rien au type maillondouble, mais on convient de rajouter un maillon « fictif », appelé sentinelle, à l’extré-
mité de la liste. La valeur présente dans le champ valeur de ce maillon ne sera pas significative (représenté par?), et
la liste aura la structure suivante :



MP2I - 2025/2026 Informatique – TP n°13 – Listes doublement chaînées 2/2

? 1 2 3 4

Figure 2 - Liste doublement chaînée (1, 2, 3, 4), version avec sentinelle.
On change donc de type pour représenter nos listes doublements chainées :

struct LDC {
maillondouble* sentinel; //Pointeur vers la sentinelle

};

typedef struct LDC ldc;

■ Q5. Écrire la fonction ldc* nouvelle_ldc() qui crée une nouvelle liste doublement chaînée. Cette liste sera vide,
ce qui signifie qu’elle ne contiendra que le maillon sentinelle, correctement initialisé.

■ Q6. Ré-écrire les fonctions retire_maillon, insere_avant et insere_apres pour la nouvelle structure. La fonction
retire_maillon pourra supposer sans le vérifier que le maillon passé en argument n’est pas le maillon senti-
nelle (et aucune de ces fonctions n’aura besoin de prendre la liste elle-même en argument).

■ Q7. Écrire une fonction void detruit_ldc(ldc* d) qui libère la totalité de la mémoire utilisée par une liste dou-
blement chaînée.

■ Q8. Écrire une fonction ldc* init_tableau(int* t, int long) qui convertit un tableau en liste doublement chaî-
née.

■ Q9. Écrire les primitives de la structure de données liste (cf cours) avec la structure doublement chainée.

3 Nombres chanceux
Les nombres chanceux sont définis par le processus suivant :

■ on part de la liste des entiers impairs (jusqu’à une certaine borne 𝑛) ; l’entier 1 est chanceux ;
■ on considère l’entier qui suit 1 dans la liste (c’est 3) ;
■ on élimine un nombre sur 3 de la liste, en commençant au début ; l’entier 3 est chanceux ;
■ on considère l’entier qui suit 3 dans la liste (c’est 7) ;
■ on élimine un nombre sur 7 de la liste, en commençant au début ; l’entier 7 est chanceux ...

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1 3 7 9 13 15 19 21 25 27 31

1 3 7 9 13 15 21 25 27 31

1 3 7 9 13 15 21 25 31

1 3 7 9 13 15 21 25 31

1 sur 3

1 sur 7

1 sur 9

1 sur 131 sur 13

Figure 3 - Génération des nombres chanceux.
■ Q10. Combien vaut la somme des nombres chanceux inférieurs ou égaux à 105? Utiliser une liste doublement

chaînée pour répondre à la question.
Remarque : Ce n’est pas la méthode la plus simple ou la plus efficace, il s’agit d’une application de ce qu’on
a fait au-dessus.

■ Q11. (Bonus) Une liste doublement chaînée permet de réaliser facilement la structure abstraite de deque (double
ended queue, ou file bilatère).
Il s’agit d’une structure séquentielle (impérative) à laquelle on peut ajouter des éléments, à droite et à gauche ;
on peut également retirer l’élément le plus à droite et l’élément le plus à gauche
Écrire les quatre fonctions suivantes qui effectuent l’ajout et le retrait d’un élément sur un côté de la structure
(le côté est écrit dans le nom des fonctions). Pour retire_gauche et retire_droite, on vérifiera la licéité de
l’appel à l’aide d’un assert.

void ajoute_gauche(ldc *d, int x);
void ajoute_droite(ldc *d, int x);
int retire_gauche(ldc *d);
int retire_droite(ldc *d);

D’après un TP de JB. Bianquis


	Première version
	Version avec sentinelle
	Nombres chanceux

